Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 27, 2010 - Issue 4
98
Views
7
CrossRef citations to date
0
Altmetric
Short communication

WINTERTIME LOSS OF ULTRADIAN AND CIRCADIAN RHYTHMS OF BODY TEMPERATURE IN THE SUBTERRANEAN EUTHERMIC MOLE VOLE, ELLOBIUS TALPINUS

, , &
Pages 879-887 | Received 18 Jul 2009, Accepted 23 Feb 2010, Published online: 18 Jun 2010
 

Abstract

Subterranean common mole voles, Ellobius talpinus, were implanted with long-term recording electronic thermometers to obtain hourly body temperature (Tb) data during either the wintertime or summertime. The two individuals tested during the summertime had significant circadian and ultradian rhythms in their Tb. Four of the five mole voles tested during the wintertime lacked rhythmicity in their Tb. The fifth individual lacked circadian rhythms but had ultradian rhythms in its Tb. A loss of circadian rhythms in Tb during deep torpor or hibernation has been reported for a few species of mammals. Inasmuch as the mole voles' wintertime Tb remained at euthermic levels, our results show that a loss of circadian body temperature rhythms in mole voles does not require the low Tb of deep torpor or hibernation. A tentative conclusion, based on these few animals, is that in common mole voles the Tb rhythms may disappear during the wintertime even though their Tb remains high. (Author correspondence: [email protected])

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.