Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 27, 2010 - Issue 8
132
Views
19
CrossRef citations to date
0
Altmetric
Research Article

INTERNAL TEMPORAL ORDER IN THE CIRCADIAN SYSTEM OF A DUAL-PHASING RODENT, THE OCTODON DEGUS

, , , &
Pages 1564-1579 | Received 10 Feb 2010, Accepted 10 Jun 2010, Published online: 20 Sep 2010
 

Abstract

Daily rhythms in different biochemical and hematological variables have been widely described in either diurnal or nocturnal species, but so far no studies in the rhythms of these variables have been conducted in a dual-phasing species such as the degus. The Octodon degus is a rodent that has the ability to switch from diurnal to nocturnal activity under laboratory conditions in response to wheel-running availability. This species may help us discover whether a complete temporal order inversion occurs parallel to the inversion that has been observed in this rodent's activity pattern. The aim of the present study is to determine the phase relationships among 26 variables, including behavioral, physiological, biochemical, and hematological variables, during the day and at night, in diurnal and nocturnal degus chronotypes induced under controlled laboratory conditions through the availability of wheel running. A total of 39 male degus were individually housed under a 12:12 light-dark (LD) cycle, with free wheel-running access. Wheel-running activity (WRA) and body temperature (Tb) rhythms were recorded throughout the experiment. Melatonin, hematological, and biochemical variables were determined by means of blood samples obtained every 6 h (ZT1, ZT7, ZT13, and ZT19). In spite of great differences in WRA and Tb rhythms between nocturnal and diurnal degus, no such differences were observed in the temporal patterns of most of the biological variables analyzed for the two chronotypes. Variation was only found in plasma urea level and lymphocyte number. A slight delay in the phase of the melatonin rhythm was also observed. This study shows the internal temporal order of a dual-phasing mammal does not show a complete inversion in accordance with its activity and body temperature pattern; it would appear that the switching mechanism involved in the degu's nocturnalism is located downstream from the pacemaker. (Author correspondence: [email protected]).

ACKNOWLEDGMENTS

This project was funded by Seneca Foundation (PI/05700/07), the Instituto de Salud Carlos III (RETICEF, RD06/0013/0019), the Ministry of Education and Science (BFU2007-60658/BFI), and a Research fellowship granted to B.B. Otalora (AP2006-04117). We wish to extend our thanks to Imanol Martínez, who kindly revised the manuscript.

Declaration of Interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.