Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 29, 2012 - Issue 6
166
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Photoperiod Alters Duration and Intensity of Non–Rapid Eye Movement Sleep Following Immune Challenge in Siberian Hamsters (Phodopus sungorus)

, , , &
Pages 683-692 | Received 15 Jan 2012, Accepted 23 Mar 2012, Published online: 27 Jun 2012
 

Abstract

Sleep is regulated by circadian and homeostatic processes, but can be altered by infectious disease. During infection or exposure to inflammatory stimuli, such as bacterial lipopolysaccharide (LPS), the duration and intensity of non–rapid eye movement sleep (NREMS), as measured by electoencephalogram (EEG) delta waves (.5–4 Hz), increase. These sleep alterations are hypothesized to conserve or redirect energy for immune system activation. Many vertebrates exhibit seasonal changes in immune function and sleep-wake cycle, and photoperiod (day length) serves as a reliable environmental cue. For example, winter is energetically demanding for most animals, and Siberian hamsters (Phodopus sungorus) adapted to short winter day lengths display reduced fever after LPS administration to presumably conserve energy. We hypothesized that short days increase the duration and intensity of NREMS after LPS challenge to create additional energy savings, despite evidence to the contrary that high fever is associated with increased NREMS. Male hamsters were housed under long (16 h light (L):8 h dark (D)) or short (8L:16D) day lengths, and chronically implanted with transmitters that recorded EEG and electromyogram (EMG) biopotentials simultaneously or core body temperature. After >10 wks in photoperiod conditions, hamsters received an i.p. injection of LPS or saline (control), and vigilance states (duration and distribution of NREMS, rapid eye movement sleep (REMS), and wakefulness) and EEG delta power spectra (NREMS intensity) were assessed. As expected, LPS treatment increased the duration and intensity of NREMS compared to controls. Hamsters adapted to short photoperiods exhibited cumulatively larger increases in NREMS duration and EEG delta wave amplitude 0–8 h after LPS injection compared to long-day LPS-treated hamsters despite short-day attenuation of fever. These results suggest a seasonal decoupling of LPS-induced fever with sleep to promote energy conservation during predictable energy shortages. Ultimately, the combination of increased sleep and reduced fever could represent a suite of physiological adaptations that increase the probability of surviving winter. (Author correspondence: [email protected])

ACKNOWLEDGMENTS

We thank Dr. Afshin Divani for kindly providing the sleep scoring program, Dr. Ed Overman for Matlab expertise, and Shannon Chen, Tanvi Joshi, and Laura Prince for help with injections. This research was supported by NSF grant IOS-08-38098.

Declaration of Interest: The authors report no conflict of interest. The authors alone are responsible for the content and the writing of this paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.