17
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Castration differentially regulates nitric oxide synthase in the hypothalamus and pituitary

, , &
Pages 29-54 | Published online: 07 Jul 2009
 

Abstract

Mammalian reproductive function is under control of the integrated hypothalamic-pituitary-gonadal (HPG) axis. Castration in male rats has been utilized as an effective tool to investigate hormonal interactions in the mammalian HPG axis. Recently, nitric oxide (NO) has been suggested to play a role in HPG hormonal regulation. In order to gain further insight into the function of the NO-NOS system in reproductive neuroendocrine control, particularly in the gonadal feedback regulation of the hypothalamic-pituitary unit, we examined steady state levels of nNOS mRNA, nNOS protein, and the important physiological index, NOS enzyme activity, of the intrinsic NOergic system in both hypothalamus and pituitary in castrated male rats and their sham-operated counterparts one week after surgery. In the pituitary, we found a significant four-fold increase in nNOS mRNA, p < 0.0003 compared to sham. Castration also resulted in a four-fold rise in pituitary nNOS protein, p < 0.02 compared to sham. Pituitary NOS enzyme activity was stimulated 2 fold, p < 0.003 after castration. In the hypothalamus, conversely, we observed no significant castration-modulated difference in either nNOS mRNA, nNOS protein or NOS enzyme activity. Thus, it appears that the hypothalamic NO-NOS system is either not required for hypothalamic adaptations to castration, although important in the release of LHRH under normal physiological conditions, or alternatively, the hypothalamus may become more sensitive to the effects of NO in the castrated state. In the pituitary, NO may attenuate the gonadotropin response to castration as a local balancing mediator.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.