Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 39, 2010 - Issue 1
137
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Development of a High-specificity Enzyme-linked Immunosorbent Assay (ELISA) System for the Quantification and Validation of Intact Rat Osteocalcin

, , , &
Pages 54-73 | Published online: 12 Jan 2010
 

Abstract

Osteocalcin (OC) exhibits hard tissue-specific expression and binding activity to hydroxyapatite. Therefore, measurement of secreted OC is a very useful index for evaluating osteoblastic differentiation in regenerative bone. In the present study, we established a high-specificity sandwich enzyme-linked immunosorbent assay (ELISA) system for the quantification of intact rat OC, which could be useful for validating tissue-engineered bone samples nondestructively and continuously. The range of detection with the sandwich ELISA system was 0.1–100 ng OC/mL of cell culture media or rat sera. No cross-reactivities were detected with OCs from other species, including human, bovine and mouse OCs, and other mammalian sera, which would contain the corresponding endogenous OCs. The intra- and inter-assay coefficients of variation were ≤4.9% and ≤5.9%, respectively. Recovery tests only showed variation between 89.4% and 103.7%. Using the newly developed direct sandwich ELISA system, we found that the secreted OC levels from rat bone marrow-derived mesenchymal stem cells during osteogenic differentiation with dexamethasone were significantly higher than those from cells undergoing non-osteogenic or adipogenic differentiation. It was established that this ELISA system would be suitable for quantitative assessment of bone formation by cultured cells with or without scaffolds in rat experimental models.

ACKNOWLEDGMENTS

We thank Nara Prefecture for a Grant-in-Aid for Academic-Industrial Research Relationships and Ms. M. Yoshimura for her technical assistance.

Declaration of Interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,480.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.