481
Views
22
CrossRef citations to date
0
Altmetric
EDITORIAL

The Th17 Cell Population and the Immune Homeostasis of the Gastrointestinal Tract

&
Pages 471-474 | Published online: 28 Oct 2013
 

Abstract

Th17 cells are a recently discovered subset of CD4+ T lymphocytes filling a hole in the repertoire of effector T cells. Th17 cells produce multiple cytokines, with pivotal impact on immune homeostasis, inflammation, and influencing a wide range of intestinal cell targets. The current issue of the International Reviews of Immunology is entirely dedicated to the various roles of Th17 T cells in the immune homeostasis and inflammation occurring in the gut. In addition to describing diverse Th17-mediated molecular pathways, a specific focus is being given to Th17 cell plasticity. This enables the Th17 cells to shift towards a Th1 profile, or to express IL-22, a protective cytokine in experimental colitis. Participation of microbiota-specific Th17 cells to normal immune homeostasis, and their role in the pathogenesis of inflammatory bowel disease (IBD), or of gluten specific-Th17 cells in celiac disease, are also being discussed. Neutralizing antibodies against IL-17A and IL-17F have commenced clinical testing in IBD. In conclusion, Th17 cells emerge as a key immune cell population and further elucidation of their roles and functional plasticity are warranted to support the discovery of novel therapies against IBD and other intestinal disorders.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,270.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.