177
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Sanggenon C and O inhibit NO production, iNOS expression and NF-κB activation in LPS-induced RAW264.7 cells

, , , &
Pages 84-88 | Received 03 Mar 2011, Accepted 11 Apr 2011, Published online: 26 May 2011
 

Abstract

Objective: The NO production through the iNOS induction by activation of nuclear factor (NF-κB) is known to involve in various inflammatory conditions. Sanggenon C and O, two Diels-Alder type adducts isolated from Morus alba, a plant has been used for the anti-inflammatory purpose in the Oriental medicine, were investigated for their effect on the NO production, iNOS expression and NF-κB activity.

Methods: The inhibitory effects of sanggenon C and O on the NF-κB activity were investigated in LPS-stimulated RAW264.7 cells by SEAP reporter assay. The regulation of the iNOS expression and IκBα activation by two compounds was also evaluated by Western blot.

Results: Both compounds strongly inhibited NO production and NF-κB activation in a dose-dependent manner. The expression of the iNOS protein was also suppressed by treatment of the compounds (10 and 1 µM). Sanggenon O showed stronger inhibition than the diastereomer sanggenon C. Both compounds prevented the phosphorylation and degradation of IκBα protein.

Conclusion: We demonstrated that sanggenon C and O inhibited NO production and iNOS expression by suppressing NF-κB activity and IκBα activation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.