100
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Suppressive effects of nonsteroidal anti-inflammatory drugs diclofenac sodium, salicylate and indomethacin on delayed rectifier K+-channel currents in murine thymocytes

, &
Pages 874-878 | Received 15 Nov 2011, Accepted 30 Jan 2012, Published online: 12 Mar 2012
 

Abstract

Lymphocytes predominantly express delayed rectifier K+-channels (Kv1.3) in their plasma membranes, and the channels play crucial roles in the lymphocyte activation and proliferation. Since nonsteroidal anti-inflammatory drugs (NSAIDs), the most commonly used analgesic and antipyretic drugs, exert immunomodulatory effects, they would affect the channel currents in lymphocytes. In the present study, employing the standard patch-clamp whole-cell recording technique, we examined the effects of diclofenac sodium, salicylate and indomethacin on the channel currents in murine thymocytes and the membrane capacitance. Diclofenac sodium and salicylate significantly suppressed the pulse-end currents of the channel. However, indomethacin suppressed both the peak and the pulse-end currents with a significant increase in the membrane capacitance. This study demonstrated for the first time that NSAIDs, such as diclofenac sodium, salicylate and indomethacin, exert inhibitory effects on thymocyte Kv1.3-channel currents. The slow inactivation pattern induced by indomethacin was thought to be associated with microscopic changes in the plasma membrane surface detected by the increase in the membrane capacitance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.