Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 22, 2010 - Issue 3
134
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Characterization of a head-only aerosol exposure system for nonhuman primates

, , , &
Pages 224-233 | Received 22 May 2009, Accepted 16 Jul 2009, Published online: 11 Jan 2010
 

Abstract

A well-characterized exposure chamber is necessary to generate reproducible atmospheres for inhalation toxicology studies. The aim of the present study was to characterize a head-only exposure chamber for non-human primates. Aerosols containing bovine serum albumin (BSA) were used to characterize a 16-L dynamic airflow head-only exposure chamber. A 250-ml plastic bottle with a respirator attached located inside the chamber was used to simulate a breathing head. Chamber leak rate, mixing, and aerosol spatial distributions were quantified. The chamber concentration profile was measured at the chamber exhaust using an aerodynamic particle sizer. Aerosol spatial distribution was determined by collecting filter samples at several chamber locations. The particle size distribution was determined by collecting cascade impactor samples at several chamber locations. The estimated chamber leak rate was within standards suggested in the literature. The measured average aerosol residence time was similar to theoretical aerosol residence time, suggesting that the chamber was mixing well. Additionally, the average concentration measured at each of the sampling locations within the chamber was similar, and the within-run coefficients of variation (CV) across all sampling locations was similar to those reported in previously published studies, again suggesting that the aerosol concentration throughout the chamber was uniform. The particle size distribution was similar throughout the exposure chamber. Additionally, the BSA concentration and particle size distributions measured in the breathing zone of the simulated head were not significantly different from measurements made elsewhere in the chamber, suggesting that respiration does not affect the average aerosol concentration or particle size distribution at the mouth.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.