Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 24, 2012 - Issue 5
477
Views
59
CrossRef citations to date
0
Altmetric
Review Article

Manufactured and airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells

, &
Pages 320-339 | Received 12 Jan 2012, Accepted 16 Feb 2012, Published online: 10 Apr 2012
 

Abstract

Human inhalation exposures to manufactured nanoparticles (NP) and airborne ultrafine particles (UFP) continues to increase in both occupational and environmental settings. UFP exposures have been associated with increased cardiovascular mortality and morbidity, while ongoing research supports adverse systemic and cardiovascular health effects after NP exposures. Adverse cardiovascular health effects include alterations in heart rate variability, hypertension, thrombosis, arrhythmias, increased myocardial infarction, and atherosclerosis. Exactly how UFP and NP cause these negative cardiovascular effects is poorly understood, however a variety of mediators and mechanisms have been proposed. UFP and NP, as well as their soluble components, are known to systemically translocate from the lung. Translocated particles could mediate cardiovascular toxicity through direct interactions with the vasculature, blood, and heart. Recent study suggests that sensory nerve stimulation within the lung may also contribute to UFP- and NP-induced acute cardiovascular alterations. Activation of sensory nerves, such as C-fibers, within the lung may result in altered cardiac rhythm and function. Lastly, release of pulmonary-derived mediators into systemic circulation has been proposed to facilitate cardiovascular effects. In general, these proposed pulmonary-derived mediators include proinflammatory cytokines, oxidatively modified macromolecules, vasoactive proteins, and prothrombotic factors. These pulmonary-derived mediators have been postulated to contribute to the subsequent prothrombotic, atherogenic, and inflammatory effects after exposure. This review will evaluate the potential contribution of individual mediators and mechanisms in facilitating cardiopulmonary toxicity following inhalation of UFP and NP. Lastly, we will appraise the literature and propose a hypothesis regarding the possible role of mast cells in contributing to these systemic effects.

Acknowledgments

This article has been reviewed by the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents necessarily reflect the views and the policies of the Agency nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Declaration of interest

This work was funded by NIH RO1 ES019311 (JMB).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.