Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 26, 2014 - Issue 4
352
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Potential mechanisms of neurobehavioral disturbances in mice caused by sub-chronic exposure to low-dose VOCs

, , &
Pages 250-258 | Received 21 Sep 2013, Accepted 08 Jan 2014, Published online: 25 Feb 2014
 

Abstract

To investigate effects of neurobehavioral disturbances in mice caused by sub-chronic exposure to low-dose volatile organic compounds (VOCs) and the possible mechanism for these effects, 60 male Kunming mice were exposed in 5 similar static chambers, 0 (control) and 4 different doses of VOCs mixture (G1–4) for consecutively 90 d at 2 h/d. The concentrations of VOCs mixture were as follows: formaldehyde, benzene, toluene, and xylene 0.05 + 0.05 + 0.10 + 0.10 mg/m3, 0.10 + 0.11 + 0.20 + 0.20 mg/m3, 0.50 + 0.55 + 1.00 + 1.00 mg/m3, 1.00 +1.10 + 2.00 + 2.00 mg/m3, respectively, which corresponded to 1/2, 1, 5, and 10 times of indoor air quality standard in China. Morris water maze (MWM) and Grip strength (GS) test were performed in the last 7 weeks. One day following VOCs exposure, oxidative stress markers, neurotransmitters, and cholinergic system enzymes in brain were examined. In addition, the expressions of N-methyl-d-aspartate (NMDA) receptor in hippocampus were determined. VOCs exposure induced behavioral impairment of mice in MWM and GS test. The levels of reactive oxygen species (ROS), malondialdehyde (MDA) and glutamic acid (Glu) were significantly increased, while the acetylcholinesterase (AChE), choline acetyltransferase (ChAT) and acetylcholine (ACh) levels, and the expression of NMDA receptor were significantly decreased in VOCs exposed groups. Results showed that sub-chronic exposure to low-dose VOCs induced damage on physique and motor function, as well as impairment on learning and memory capacity of mice. Oxidative damage, abnormal metabolism of neurotransmitters and cholinergic system enzymes, and the alternation of NMDA receptor expression may be the possible mechanism for VOCs-induced neurotoxicity.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.