772
Views
39
CrossRef citations to date
0
Altmetric
Articles

Signalling pathways of insulin-like growth factors (IGFs) and IGF binding protein-3

&
Pages 235-244 | Received 04 Aug 2011, Accepted 10 Aug 2011, Published online: 07 Sep 2011
 

Abstract

Although the insulin-like growth factor (IGF) system is essential for normal growth and development, its dysregulation has been implicated in a range of pathological states. The peptide growth factors IGF-I and IGF-II exert their effects by binding to cell-surface heterotetrameric tyrosine kinase receptors and activating multiple intracellular signalling cascades, leading to changes in the expression of proteins essential for cell proliferation, survival and differentiation. The IGF system comprises multiple ligands, receptors and high-affinity IGF binding proteins (IGFBPs), with added complexity arising from crosstalk between its receptors and other key growth-regulatory pathways such as those activated by steroid hormones, integrins and other receptor tyrosine kinases. The IGFBPs are also increasingly recognised for their intrinsic growth-regulatory activity, and the ability of IGFBP-3 to modulate signalling pathways of nuclear hormone and growth factor receptors, as well as novel receptors, is believed to play a role both in normal physiology and in disease.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,233.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.