612
Views
42
CrossRef citations to date
0
Altmetric
Research Papers

Shear stress and VEGF enhance endothelial differentiation of human adipose-derived stem cells

, , , , , , & show all
Pages 139-149 | Received 17 Jun 2014, Accepted 14 Jul 2014, Published online: 12 Aug 2014
 

Abstract

Herein we combine chemical and mechanical stimulation to investigate the effects of vascular endothelial growth factor (VEGF) and physiological shear stress in promoting the differentiation human adipose derived stem cells (ADSCs) into endothelial cells. ADSCs were isolated and characterized; endothelial differentiation was promoted by culturing confluent cells in 50 ng/ml VEGF under physiological shear stress for up to 14 days. Afterwards, endothelial cells were seeded onto collagen or acellular aortic valve matrices and exposed to four culture conditions: shear stress + VEGF; shear stress − VEGF; static + VEGF and static − VEGF. After 7 days, phenotype was investigated. ADSCs subjected to shear stress and VEGF express a comprehensive range of specific endothelial markers (vWF, eNOS and FLT-1 after 7 days and CD31, FLk-1 and VE-cadherin after 14 days) and maintain the phenotype when seeded onto scaffolds. Our protocol proved to be an efficient source of endothelial-like cells for tissue engineering based on autologous ADSC.

Acknowledgements

Authors thank Dr Basim A. Matti M.D. (Harley Street Clinic, London) for providing adipose tissue samples and Dr. UlianoGuerrini (University of Milan) for the critical reading of the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,233.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.