391
Views
33
CrossRef citations to date
0
Altmetric
Research Article

Vibrating-mesh nebulization of liposomes generated using an ethanol-based proliposome technology

, , &
Pages 173-180 | Received 29 Mar 2010, Accepted 29 Jun 2010, Published online: 04 Aug 2010
 

Abstract

This is the first study that evaluates the influence of the compartmental design of the micropump Aeroneb Go nebulizer and the viscosity of a proliposome hydration medium on vibrating-mesh aerosolization of liposomes. Ethanol-based proliposomes comprising soya phosphatidylcholine and cholesterol (1:1 mole ratio) were hydrated by using isotonic NaCl (0.9%) or sucrose (9.25%) solutions to generate liposomes that entrapped approximately 61% of the hydrophilic drug, salbutamol sulphate. Liposomes were aerosolized by the nebulizer to a two-stage impinger. For both formulations, the aerosol mass output was higher than the phospholipid output, indicating some accumulation of large liposomes or liposome aggregate within the nebulizer. Using NaCl (0.9%) solution as the dispersion medium, aerosol droplet size was much smaller and aerosol mass and phospholipid outputs were higher. This was attributed to the lower viscosity of the NaCl solution, resulting in a reduced retention of the aerosols in the “trap” of the nebulizer. For the entrapped salbutamol sulphate, although the “fine particle fraction” was relatively high (57.44%), size reduction of the liposomes during nebulization caused marked losses of the drug originally entrapped. Overall, liposomes generated from proliposomes when using this nebulizer showed high nebulization output and small droplet size. However, further work is required to reduce the losses of the originally entrapped drug from liposomes.

Acknowledgements

We wish to thank Mr Dave McCarthy, School of Pharmacy, University of London for the microscopy pictures. We also thank Lipoid, Switzerland for supplying us with soya phosphatidylcholine (Lipoid S-100) and Aerogen, Ireland for supplying us with the Aeroneb Go nebulizer.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.