1,110
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Filter-extruded liposomes revisited: a study into size distributions and morphologies in relation to lipid-composition and process parameters

, , , , &
Pages 11-20 | Received 22 Dec 2014, Accepted 20 Feb 2015, Published online: 31 Mar 2015
 

Abstract

Filter-extrusion is a widely used technique for down-sizing of phospholipid vesicles. In order to gain a detailed insight into size and size distributions of filter-extruded vesicles composed of egg phosphatidyl-choline (with varying fractions of cholesterol) – in relation to extrusion-parameters (pore-size, number of filter passages, and flow-rate), flow field-flow fractionation in conjunction with multi-angle laser light scattering (AF4-MALLS, Wyatt Technology Corp., Santa Barbara, CA) was employed. Liposome size-distributions determined by AF4-MALLS were compared with those of dynamic light scattering and correlated with cryo-transmission electron microscopy and 31P-NMR-analysis of lamellarity. Both the mean size of liposome and the width of size distribution were found to decrease with sequential extrusion through smaller pore size filters, starting at a size range of ≈70–415 nm upon repeated extrusion through 400 nm pore-filters, eventually ending with a size range from ≈30 to 85 nm upon extrusion through 30 nm pore size filters. While for small pores sizes (50 nm), increased flow rates resulted in smaller vesicles, no significant influence of flow rate on mean vesicle size was seen with larger pores. Cholesterol at increasing mol fractions up to 0.45 yielded bigger vesicles (at identical process conditions). For a cholesterol mol fraction of 0.5 in combination with small filter pore size, a bimodal size distribution was seen indicating cholesterol micro-crystallites. Finally, a protocol is suggested to prepare large (∼ 300 nm) liposomes with rather narrow size distribution, based on the filter extrusion at defined flow-rates in combination with freeze-/thaw-cycling and bench-top centrifugation.

Acknowledgements

The authors thank Lipoid GmbH, Ludwigshafen, for the generous gift of lipids. The authors also thank ERASMUS-student Annika Pongratz (University of Heidelberg), for helping with extrusion experiments.

Declaration of interest

The authors report that they have no conflicts of interest. The authors thank Phospholipid Research Center, Heidelberg, for giving a (partial) Ph.D. Grant to A. H.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.