113
Views
8
CrossRef citations to date
0
Altmetric
Whisking in air: Encoding of kinematics by VPM neurons in awake rats

Whisking in air: Encoding of kinematics by VPM neurons in awake rats

, , &
Pages 111-120 | Received 28 Feb 2010, Accepted 19 Jun 2010, Published online: 19 Aug 2010
 

Abstract

Rodent whisking behavior generates two types of neural signals: one produced by whisker contact with objects; the other by movements in air. While kinematic signals generated by contact reliably activate neurons at all levels of the trigeminal neuraxis, the extent to which the kinematics of whisking in air are reliably encoded at each level remains unclear. Previously, we showed that the responses of trigeminal ganglion (TG) neurons in awake, head-fixed rats are correlated with whisking kinematic parameters, but that individual neurons may differ substantially in the reliability of their kinematic encoding. Here, we extend that analysis to neurons in the ventral posterior medial (VPM) nucleus. Three possible coding strategies were examined: (1) firing rate across an entire movement; (2) the probability of individual spikes as a function of the instantaneous movement trajectory; and (3) the coherence between spikes and whisking. While VPM neurons were clearly responsive to variations in whisker kinematics during whisking in air, the encoding of whisker kinematics by VPM neurons was less consistent than that of TG neurons. Furthermore, we found that, in VPM as in TG, movement direction is an important determinant of unit responsiveness during whisking in air.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 711.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.