69
Views
2
CrossRef citations to date
0
Altmetric
Effects of homosynaptic depression on spectral properties of H-reflex recordings

Effects of homosynaptic depression on spectral properties of H-reflex recordings

, PhD, &
Pages 38-43 | Received 16 Aug 2011, Accepted 19 Dec 2011, Published online: 14 Mar 2012
 

Abstract

The purpose of this study was to determine the effects of homosynaptic depression (HD) on spectral properties of the soleus (SOL) H-reflex. Paired stimulations, separated by 100 ms, were used to elicit an unconditioned and conditioned H-reflex in the SOL muscle of 20 participants during quiet standing. Wavelet and principal component analyses were used to analyze features of the time-varying spectral properties of the unconditioned and conditioned H-reflex. The effects of HD on spectral properties of the H-reflex signal were quantified by comparing extracted principal component scores. The analysis extracted two principal components: one associated with the intensity of the spectra and one associated with its frequency. The scores for both principal components were smaller for the conditioned H-reflex. HD decreases the spectral intensity and changes the spectral frequency of H-reflexes. These results suggest that HD changes the recruitment pattern of the motor units evoked during H-reflex stimulations, in that it not only decreases the intensity, but also changes the types of motor units that contribute to the H-reflex signal.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 711.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.