158
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Platelet factor XIIIa release during platelet aggregation and plasma clot strength measured by thrombelastography in patients with coronary artery disease treated with clopidogrel

, , , , , , & show all
Pages 358-363 | Received 29 Dec 2013, Accepted 16 Apr 2014, Published online: 15 May 2014
 

Abstract

It has been estimated that up to half of circulating factor XIIIa (FXIIIa) is stored in platelets. The release of FXIIIa from platelets upon stimulation with adenosine diphosphate (ADP) in patients with coronary artery disease treated with dual antiplatelet therapy has not been previously examined. Samples from 96 patients with established coronary artery disease treated with aspirin and clopidogrel were examined. Platelet aggregation was performed by light transmittance aggregometry in platelet-rich plasma (PRP), with platelet-poor plasma (PPP) as reference, and ADP 5 µM as agonist. Kaolin-activated thrombelastography (TEG) was performed in citrate PPP. PRP after aggregation was centrifuged and plasma supernatant (PSN) collected. FXIIIa was measured in PPP and PSN. Platelet aggregation after stimulation with ADP 5 µM resulted in 24% additional FXIIIa release in PSN as compared to PPP (99.3 ± 27 vs. 80.3 ± 24%, p < 0.0001). FXIIIa concentration in PSN correlated with maximal plasma clot strength (TEG-G) (r = 0.48, p < 0.0001), but not in PPP (r = 0.15, p = 0.14). Increasing quartiles of platelet-derived FXIIIa were associated with incrementally higher TEG-G (p = 0.012). FXIIIa release was similar between clopidogrel responders and non-responders (p = 0.18). In summary, platelets treated with aspirin and clopidogrel release a significant amount of FXIIIa upon aggregation by ADP. Platelet-derived FXIIIa may contribute to differences in plasma TEG-G, and thus, in part, provide a mechanistic explanation for high clot strength observed as a consequence of platelet activation. Variability in clopidogrel response does not significantly influence FXIIIa release from platelets.

Declaration of interest

Recruitment of subjects occurred during employment of Y. Jin at Indiana University. Y. Jin is currently an employee of Eli Lilly and Co, USA. All other authors have no conflicts of interest to declare.

This study was supported, in part, by the Indiana Clinical and Translational Sciences Institute funded, in part, by Grant Number (RR025761) from the National Institutes of Health, National Center for Research Resources, Clinical and Translational Sciences Award, the Indiana University Health Value Grant, the Department of Medicine, Indiana University School of Medicine, the Indiana University School of Medicine – Indiana University Health Strategic Research Initiative and NIH grant T32GM008425.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.