130
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Oscillations can reconcile slowly changing stimuli with short neuronal integration and STDP timescales

Pages 85-96 | Received 30 Sep 2013, Accepted 06 Jan 2014, Published online: 26 Feb 2014
 

Abstract

Oscillatory brain activity has been widely reported experimentally, yet its functional roles, if any, are still under debate. In this review we argue two things: firstly, thanks to oscillations, even slowly changing stimuli can be encoded in precise relative spike times, decodable by downstream “coincidence detector” neurons in a feedforward manner. Secondly, the required connectivity to do so can spontaneously emerge with spike timing-dependent plasticity (STDP), in an unsupervised manner. The key here is that a common oscillatory drive enables neurons to remain under a fluctuation-driven regime. In this regime spike time jitter does not accumulate and can thus be lower than the intrinsic timescales of stimulus fluctuations, which leads to so-called “temporal encoding”. Furthermore, the oscillatory drive formats the spikes in discrete oversampling volleys, and the relative spike times between neurons indicate the eventual differences in their activation levels. The oversampling accelerates the STDP-based learning for downstream neurons. After learning, readout only takes one oscillatory cycle. Finally, we also discuss experimental evidence, and the question of how the theory is complementary to the so-called “communication through coherence” theory.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 642.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.