132
Views
18
CrossRef citations to date
0
Altmetric
Tumour Radioresponse Correlates With EF5 Uptake

The radiation response of cells from 9L gliosarcoma tumours is correlated with [F18]-EF5 uptake

, , , , , , & show all
Pages 1137-1147 | Received 22 Mar 2009, Accepted 13 Jul 2009, Published online: 10 Mar 2010
 

Abstract

Purpose: Tumour hypoxia affects cancer biology and therapy-resistance in both animals and humans. The purpose of this study was to determine whether EF5 ([2-(2-nitro-1-H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)-acetamide]) binding and/or radioactive drug uptake correlated with single-dose radiation response in 9L gliosarcoma tumours.

Materials and methods: Twenty-two 9L tumours were grown in male Fischer rats. Rats were administered low specific activity 18F-EF5 and their tumours irradiated and assessed for cell survival and hypoxia. Hypoxia assays included EF5 binding measured by antibodies against bound-drug adducts and gamma counts of 18F-EF5 tumour uptake compared with uptake by normal muscle and blood. These assays were compared with cellular radiation response (in vivo to in vitro assay). In six cases, uptake of tumour versus muscle was also assayed using images from a PET (positron emission tomography) camera (PENN G-PET).

Results: The intertumoural variation in radiation response of 9L tumour-cells was significantly correlated with uptake of 18F-labelled EF5 (i.e., including both bound and non-bound drug) using either tumour to muscle or tumour to blood gamma count ratios. In the tumours where imaging was performed, there was a significant correlation between the image analysis and gamma count analysis. Intertumoural variation in cellular radiation response of the same 22 tumours was also correlated with mean flow cytometry signal due to EF5 binding.

Conclusion: To our knowledge, this is the first animal model/drug combination demonstrating a correlation of radioresponse for tumour-cells from individual tumours with drug metabolism using either immunohistochemical or non-invasive techniques.

Acknowledgements

Thanks to Grant RO1-CA87645 and the Departments of Radiation Oncology and Radiology at the University of Pennsylvania for financial support, and to The National Cancer Institute for the supply of unlabelled EF5.

Declaration of interest: EF5 is patented (inventors include CJK, AVK, WRD) with rights assigned to the University of Pennsylvania. UPENN has a licensing agreement with Varian.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.