163
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Iodine-125-labeled DNA-Triplex-forming oligonucleotides reveal increased cyto- and genotoxic effectiveness compared to Phosphorus-32

, &
Pages 679-685 | Received 28 Jul 2015, Accepted 25 Feb 2016, Published online: 29 Mar 2016
 

Abstract

Purpose: The efficacy of DNA-targeting radionuclide therapies might be strongly enhanced by employing short range particle-emitters. However, the gain of effectiveness is not yet well substantiated. We compared the Auger electron emitter I-125 to the ß-emitter P-32 in terms of biological effectiveness per decay and radiation dose when located in the close proximity to DNA using DNA Triplex-forming oligonucleotides (TFO). The clonogenicity and the induction of DNA double-strand breaks (DSB) were investigated in SCL-II cells after exposure to P-32- or I-125-labeled TFO targeting the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene and after external homogeneous exposure to gamma-rays as reference radiation. Materials and methods: TFO were labeled with P-32 or I-125 using the primer extension method. Cell survival was analyzed by colony-forming assay and DNA damage was assessed by microscopic quantification of protein 53 binding protein 1 (53BP1) foci in SCL-II cells. Results: I-125-TFO induced a pronounced decrease of cell survival (D37 at ∼360 accumulated decays per cell, equivalent to 1.22 Gy cell nucleus dose) and a significant increase of 53BP1 foci with increasing decays. The P-32-labeled TFO induced neither a strong decrease of cell survival nor an increase of 53BP1 foci up to ∼4000 accumulated decays per cell, equivalent to ∼1 Gy cell nucleus dose. The RBE for I-125-TFO was in the range of 3–4 for both biological endpoints. Conclusions: I-125-TFO proved to be much more radiotoxic than P-32-TFO per decay and per unit dose although targeting the same sequence in the GAPDH gene. This might be well explained by the high number of low energy Auger electrons emitted by I-125 per decay, leading to a high ionization density in the immediate vicinity of the decay site, probably producing highly complex DNA lesions overcharging DNA repair mechanisms.

Acknowledgements

This work was funded by the German Federal Ministry for Education and Research, Grant 02NUK005A. The authors thank Stefan Reiter, Dominik Oskamp and Marcel von Ameln for excellent technical support.

Disclosure statement

The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.