522
Views
33
CrossRef citations to date
0
Altmetric
Papers

Metabolites of amygdalin under simulated human digestive fluids

&
Pages 770-779 | Received 03 Mar 2010, Accepted 22 Mar 2010, Published online: 09 Jun 2010
 

Abstract

In the present study, degradation of amygdalin in the human digestive fluids and absorption of its metabolites by the human small intestine were evaluated by simulating a gastrointestinal digestion model combined with a human intestinal cell culture. Orally administered amygdalin was degraded into prunasin by digestive enzymes after passing through the salivary and gastrointestinal phases. Prunasin, the major metabolite of amygdalin in the digestive fluids, was incubated in a caco-2 cell culture system. Prunasin was degraded into the mandelonitrile by β-glucosidase and then hydroxylated across the small intestinal wall, producing hydroxymandelonitrile (149 Da). Results from this study suggest that risk assessment of amygdalin from food consumption can be done in a more accurate way by determining a pathway of amygdalin metabolism in the simulating human upper gastrointestinal tract.

Acknowledgements

The present paper was supported by RP-Grant 2010 of Ewha Woman's University.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 910.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.