3
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Electrochemical Profile for Ion Transport across the Membrane of Proximal Tubular Cells

, &
Pages 67-97 | Published online: 09 Jul 2009
 

Abstract

A micropuncture study was performed on the bullfrog kidney proximal tubular cells utilizing double-barreled ion-selective microelectrodes. The intracellular activities of Na+, K+, Cl-, HCO-3 and pH were determined to be 21.6 mEq/L, 67.4 mEq/L, 9.9 mEq/L, 20.2 mEq/L, and 7.49 pH units, respectively. In the extracellular fluid the following activities were found: Na+, 87.4 mEq/L; K+, 2.64 mEq/L; Cl- 72.5 mEq/L; HCO-3, 17.9 mEq/L; and pH, 7.66. The membrane potential difference was 68.4 mV and 60.4 mV across the peritubular and brush borders, respectively. The electrochemical potential differences across the individual borders of the proximal tubule cells were separately calculated by setting the intracellular level of both electrical and chemical potentials at zero for convenience.

From these analyses, the following interpretations are made. (1) In the net reabsorption of Na+, luminal Na+ enters the cell along a 95-mV gradient across the luminal border and is pumped out to the interstitium against a 104 mV gradient. In the reabsorption of bicarbonate, an uphill pump of about 69 mV (about 70% of the Na+ entry gradient) must exist on the luminal border, of which about 55 mV (80% of the bicarbonate gradient) is accounted for by the H+ secretory pump. (2) In the net reabsorption of K+, a significant K+ uptake pump must exist on the luminal border in addition to the powerful peritubular Na+- K+ exchange pump. The reabsorption of Cl- by the epithelium may take place in two ways: (a) transmembrane transport involving an uphill step of several millivolts, and (b) paracellular leakage through the tight junction.

It is thought that the Na+ pump located on the basolateral border of the proximal tubule cell plays a primary role in the regulation of the movement of other ions and water. The regulatory mechanisms of these substances may involve some electrochemical feedback mechanism that works across the proximal tubular epithelium.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.