123
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Recombinant Escherichia coli cells immobilized in Ca-alginate beads for metabolite production

, , , , &
Pages 348-359 | Received 25 Aug 2008, Published online: 07 Oct 2009
 

Abstract

Milligram amounts of metabolites of drug candidates are required to identify toxic products. Human drug metabolites are currently produced selectively in a time- and cost-efficient manner in bioreactor systems containing recombinant Escherichia coli co-expressing a human cytochrome P450 isoenzyme/NADPH cytochrome P450 reductase (hCYP/HR) complex. For further optimization, immobilization of the catalytic system in Ca-alginate microbeads was considered. This new concept was designed for CYP3A4 with testosterone as substrate. Immobilized E. coli cells had a high maximal and homogeneously distributed biomass. Viability was stable over at least 1 week of culture and even longer during storage. Gene expression was ideally initiated 6 h after immobilization. Although immobilized E. coli cells expressed a highly functional enzyme system after 2 days, they did not metabolize testosterone, probably due to cell permeability problems resulting from immobilization. Therefore, immobilized cell membranes displaying testosterone bioconversion activity, even after long-term storage, will be used in bioreactors with high organic solvent content.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 791.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.