1,126
Views
53
CrossRef citations to date
0
Altmetric
Review Article

Mechanism of the ABC transporter ATPase domains: catalytic models and the biochemical and biophysical record

&
Pages 39-50 | Received 12 Aug 2012, Accepted 27 Sep 2012, Published online: 06 Nov 2012
 

Abstract

ABC transporters comprise a large, diverse, and ubiquitous superfamily of membrane active transporters. Their core architecture is a dimer of dimers, comprising two transmembrane domains that bind substrate and form the channel, and two ATP-binding cassettes, which bind and hydrolyze ATP to energize the translocase function. The prevailing paradigm for the ABC transport mechanism is the Switch Model, in which the nucleotide binding domains are proposed to dimerise upon binding of two ATP molecules, and thence dissociate upon sequential hydrolysis of the ATP. This idea appears consistent with crystal structures of both isolated subunits and whole transporters, as well as with a significant body of biochemical data. Nonetheless, an alternative Constant Contact Model has been proposed, in which the nucleotide binding domains do not fully dissociate, and ATP hydrolysis occurs alternately at each of the two active sites. Here, we review the biochemical and biophysical data relating to the ABC catalytic mechanism, to show how they may be construed as consistent with a Constant Contact Model, and to assess to what extent they support the Switch Model.

Editor: Michael M. Cox

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 750.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.