440
Views
312
CrossRef citations to date
0
Altmetric
Research Article

Aldehyde Dehydrogenases and Their Role in Carcinogenesis

Pages 283-335 | Published online: 26 Sep 2008
 

Abstract

Aldehydes are highly reactive molecules that may have a variety of effects on biological systems. They can be generated from a virtually limitless number of endogenous and exogenous sources. Although some aldehyde-mediated effects such as vision are beneficial, many effects are deleterious, including cytotoxicity, mutagenicity, and carcinogenicity. A variety of enzymes have evolved to metabolize aldehydes to less reactive forms. Among the most effective pathways for aldehyde metabolism is their oxidation to carboxylic acids by aldehyde dehydrogenases (ALDHs).

ALDHs are a family of NADP-dependent enzymes with common structural and functional features that catalyze the oxidation of a broad spectrum of aliphatic and aromatic aldehydes. Based on primary sequence analysis, three major classes of mammalian ALDHs — 1, 2, and 3 — have been identified. Classes 1 and 3 contain both constitutively expressed and inducible cytosolic forms. Class 2 consists of constitutive mitochondrial enzymes. Each class appears to oxidize a variety of substrates that may be derived either from endogenous sources such as amino acid, biogenic amine, or lipid metabolism or from exogenous sources, including aldehydes derived from xenobiotic metabolism.

Changes in ALDH activity have been observed during experimental liver and urinary bladder carcinogenesis and in a number of human tumors, including some liver, colon, and mammary cancers. Changes in ALDH define at least one population of preneoplastic cells having a high probability of progressing to overt neoplasms. The most common change is the appearance of class 3 ALDH dehydrogenase activity in tumors arising in tissues that normally do not express this form. The changes in enzyme activity occur early in tumorigenesis and are the result of permanent changes in ALDH gene expression.

This review discusses several aspects of ALDH expression during carcinogenesis. A brief introduction examines the variety of sources of aldehydes. This is followed by a discussion of the mammalian ALDHs. Because the ALDHs are a relatively understudied family of enzymes, this section presents what is currently known about the general structural and functional properties of the enzymes and the interrelationships of the various forms.

The remainder of the review discusses various aspects of the ALDHs in relation to tumorigenesis. The expression of ALDH during experimental carcinogenesis and what is known about the molecular mechanisms underlying those changes are discussed. This is followed by an extended discussion of the potential roles for ALDH in tumorigenesis. The role of ALDH in the metabolism of cyclophosphamidelike chemotherapeutic agents is described. This work suggests that modulation of ALDH activity may be an important determinant of the effectiveness of certain chemotherapeutic agents. The evidence that changes in ALDH are part of an adaptive response of preneoplastic and neoplastic cells to altered cell physiology or stress is then considered. Roles in the metabolism of aldehydes generated from lipid peroxidation and as part of the Ah gene-mediated response to xenobiotic exposure are both discussed. The data are consistent with a role for certain ALDHs in lipid aldehyde metabolism. Biochemical and genetic data also imply that changes in ALDH may be linked, in part, to cellular adaptation to oxidative stress.

Finally, a model of inducible ALDH gene regulation is proposed. The model incorporates current information about ALDH gene expression with the regulation of other genes known to be part of the adaptive responses occurring in neoplastic cells. The model suggests that regulation of class 1 and 3 ALDH gene activity may be complex, involving the tissue-specific ability to respond to a variety of physiological cues. The model also suggests several avenues for future research that should provide a clearer understanding of the regulation of this important gene family in response to a variety of factors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.