392
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Sensitizing primary acute lymphoblastic leukemia to natural killer cell recognition by induction of NKG2D ligands

, , , , &
Pages 167-173 | Received 04 Mar 2012, Accepted 26 Jun 2012, Published online: 08 Sep 2012
 

Abstract

Natural killer (NK) cell immunosurveillance may be impaired by malignant disease, resulting in tumor escape and disease progression. Therapies that enhance NK cytotoxicity may therefore prove valuable in remission-induction and maintenance treatment regimens. Acute lymphoblastic leukemia (ALL) has previously been considered resistant to NK cell lysis and not tractable to this approach. Our study demonstrates that bortezomib, valproate and troglitazone can up-regulate NK activating ligands on a B-ALL cell line and on a proportion but not all adult primary B-ALL samples. Drug-treated ALL cells trigger higher levels of NK degranulation, as measured by CD107a expression, and this effect is dependent on signaling through the NK activating receptor NKG2D. These results suggest that bortezomib, valproate and troglitazone may have clinical utility in sensitizing ALL to NK mediated lysis in vivo.

Acknowledgement

This work was supported by a grant from the British Society for Haematology.

Potential conflict of interest:

Disclosure forms provided by the authors are available with the full text of this article at www.informahealthcare.com/lal.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,065.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.