265
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Impact of bone marrow stromal cells on Bcl-2 family members in chronic lymphocytic leukemia

, , , &
Pages 899-910 | Received 11 Dec 2012, Accepted 21 Jun 2013, Published online: 10 Sep 2013
 

Abstract

Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia in the Western world. High levels of Bcl-2 family anti-apoptotic proteins are responsible for apoptosis resistance. Besides anti-apoptotic proteins, the microenvironment provides substantial survival signals to CLL leukemic cells. However, in-depth knowledge on the role of individual Bcl-2 family members in the context of the microenvironment is still limited. We performed a comprehensive analysis of transcripts and proteins of 18 Bcl-2 family members using an “apoptosis array microfluidic card” in primary cells before and after stromal co-cultures. Our data showed that five of six anti-apoptotic members (excluding Bcl-b), two of three pro-apoptotic members (excluding Bok) and six of nine BH3-only members were present at detectable mRNA levels in CLL cells. Importantly, stromal-mediated extended survival of CLL cells was strongly associated with elevated global transcription. Upon co-culturing with stromal cells, there was an early response of an increase in anti- (2/5) and pro-apoptotic protein (3/8) transcripts on day 1, while an increase in anti-apoptotic proteins was observed on day 3, with no significant change in pro-apoptotic proteins. Our study revealed a differential pattern of expression of both transcripts and proteins following stromal co-cultures, proposing a significance of Bcl-2 family members in the stromal microenvironment.

Potential conflict of interest:

Disclosure forms provided by the authors are available with the full text of this article at www.informahealthcare.com/lal.

This work was supported in part by grants from the CLL Consortium (PO1CA081534, to V. G. and W. G. W), the CLL-Global Research Foundation (to K. B.) and a Cancer Center Support Grant, P30-16672, from the National Cancer Institute.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,065.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.