65
Views
59
CrossRef citations to date
0
Altmetric
Original Article

Glycol Methacrylate in Light Microscopy a Routine Method for Embedding and Sectioning Animal Tissues

&
Pages 387-400 | Published online: 12 Jul 2009
 

Abstract

Glycol methacrylate (GMA), a water and ethanol miscible plastic, was introduced to histology as an embedding medium for electron microscopy. This medium may be made soft enough for cutting thick sections for routine light microscopy by altering its composition. A procedure for the infiltration, polymerization, and sectioning of animal tissues in GMA for light microscopy is presented which is no more complex than paraffin techniques and which has a number of advantages: (I) The GMA medium is compatible with both aqueous fixatives (formaldehyde, glutaraldehyde, Bouin's, and Zenker's) and non-aqueous fixatixes (Carnoy's, Newcomer's, ethanol, and acetone). (2) Undue solvent extraction of the tissue is avoided because adequate dehydration occurs during infiltration of the embedding medium. Separate dehydration and clearing of the tissue prior to embedding is eliminated. (3) When polymerized, the supporting matrix is firm enough that hard and soft tissues adjacent to one another may be sectioned without distortion. (4) Thermal artifact is reduced to a minimum during polymerization because the temperature of the tissue may be maintained at 0-4 C from fixation through ultraviolet light polymerization of the embedding medium. (5) Shrinkage during polymerization of the embedding medium is minimized by prepolymerization of the medium before use. (6) Sections may be easily cut using conventional steel knives and rotary microtomes at a thickness of 0.5 to 3.0 microns, thus improving resolution compared with routinely thicker paraffin sections. (7) The polymerized GMA medium is porous enough so that staining, auto radiography, and other histological procedure are done without removal of the embedding medium from the sections. A list of these stains and related procedures are included. (8) Enzyme digestion of ultra thin sections of tissue embedded in GMA is common in electron microscopic cyto chemistry. me same digestion techniques appear compatible with the thicker seaions used in light microscopy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.