736
Views
81
CrossRef citations to date
0
Altmetric
Original Article

In vitro and in vivo investigation of glucose-mediated brain-targeting liposomes

, , , , , , , , , & show all
Pages 536-549 | Received 29 Aug 2009, Accepted 30 Dec 2009, Published online: 05 Feb 2010
 

Abstract

New glycosyl derivative of cholesterol was synthesized as a material for preparing novel liposome to overcome the ineffective delivery of normal drug formulations to brain by targeting the (glucose transporters) GLUTs on the BBB. Coumarin-6 was used as fluorescent probe. The results have shown that the cytotoxicity for the brain capillary endothelial cells (BCECs) of the glucose-mediated brain targeting liposome containing coumarin-6 was less than that of conventional liposome. The BBB model in vitro was established by coculturing of BCECs and astrocytes (ACs) of rat to test the transendothelial ability crossing the BBB. The transendothelial ability was confirmed strengthen alone with the amount of the new glycosyl derivative of cholesterol used in liposome. After i.v. administration of LIP, control liposome (CLP), and GLP-4, the AUC0–t of coumarin-6 for GLP-4 was 2.85 times higher than that of LIP, and 3.33 times higher than that of CLP. The Cmax of CLP-4 was 1.43 times higher than that of LIP, and 3.10 times higher than that of CLP. Both pharmacokinetics and distribution in mice were also investigated to show that this novel brain targeting drug delivery system was promising.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.