60
Views
45
CrossRef citations to date
0
Altmetric
Original Article

Development of a Sustained-Release Biodegradable Polymer Delivery System for Site-Specific Delivery of Oligonucleotides: Characterization of P(LA-GA) Copolymer Microspheres In Vitro

, &
Pages 291-302 | Received 30 Nov 1996, Accepted 30 Dec 1996, Published online: 26 Jun 2009
 

Abstract

Antisense oligodeoxynucleotides (ODNs) can selectively inhibit individual gene expression provided they gain access to and remain stable at the target site for a sufficient period of time. Biodegradable sustained-release delivery systems may facilitate site-specific delivery and also prevent degradation of ODNs by nucleases whilst delivering the nucleic acid in a controlled manner to the desired site of action. In this study, we have characterized biodegradable poly (lactide-co-glycolide) (P(LA-GA)) 50:50 microspheres for the potential delivery of antisense oligonucleotides in vivo. Phosphodiester (PO) oligonucleotides complementary to either c-myc proto-oncogene or the tat gene in HIV-RNA were adequately incorporated within P(LA-GA) microspheres with entrapment efficiencies up to 60% depending on particles size. In vitro release profiles of antisense nucleic acids from 10-20 μm size microspheres over 56 days in physiological buffer were triphasic. Profiles were characterised by an initial burst effect during the first 48 hours (phase 1) of release followed by a more sustained release (phase 2) with an additional increased release (phase 3) being observed after 25 days which corresponded with bulk degradation of the copolymer matrix. The release profiles were influenced by microsphere size, copolymer molecular weight, ODN loading, ODN length and by the pH of release medium used. The serum stability of PO ODNs was significantly improved when entrapped within P(LA-GA) microspheres and the hybridization capability, as assessed by duplex melting (Tm) measurements, of released ODN was not impaired by the double-emulsion microsphere fabrication procedure used. Thus, P(LA-GA) microspheres appear to be promising candidates for improving site-specific delivery profiles for ODNs and are worthy of further evaluation in vivo.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.