1,147
Views
140
CrossRef citations to date
0
Altmetric
Review Article

Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: a review

, &
Pages 475-486 | Received 11 Jun 2010, Accepted 20 Sep 2010, Published online: 22 Oct 2010
 

Abstract

Fluorescence nanocrystals or quantum dots (QDs) are engineered nanoparticles (NP) that have shown great promise with potential for many biological and biomedical applications, especially in drug delivery/activation and cellular imaging. The use of nanotechnology in medicine directed to drug delivery is set to expand in the coming years. However, it is unclear whether QDs, which are defined as NPs rather than small molecules, can specifically and effectively deliver drugs to molecular targets at subcellular levels. When QDs are linked to suitable ligands that are site specific, it has been shown to be brighter and photostable when compared with organic dyes. Interestingly, pharmaceutical sciences are exploiting NPs to minimize toxicity and undesirable side effects of drugs. The unforeseen hazardous properties of the carrier NPs themselves have given rise to some concern in a clinical setting. The kind of hazards encountered with this new nanotechnology materials are complex compared with conventional limitations created by traditional delivery systems. The development of cadmium-derived QDs shows great potential for treatment and diagnosis of cancer and site-directed delivery by virtue of their size-tunable fluorescence and with highly customizable surface for directing their bioactivity and targeting. However, data regarding the pharmacokinetic and toxicology studies require further investigation and development, and it poses great difficulties to ascertain the risks associated with this new technology. Additionally, nanotechnology also displays yet another inherent risk for toxic cadmium, which will enter as a new form of hazard in the biomedical field. This review will look at cadmium-derived QDs and discuss their future and their possible toxicities in a disease situation.

Acknowledgements

The authors acknowledge the financial support of Samuel Sebba Trust and EPSRC in development of QDs for biomedical application.

Declaration of interest

The authors report no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.