Publication Cover
Endothelium
Journal of Endothelial Cell Research
Volume 8, 2001 - Issue 2
29
Views
60
CrossRef citations to date
0
Altmetric
Original Article

The Role of p38 MAP Kinase in Hydrogen Peroxide Mediated Endothelial Solute Permeability

, &
Pages 107-116 | Received 01 Feb 2000, Accepted 25 Sep 2000, Published online: 13 Jul 2009
 

Abstract

Objective The purpose of this study was to determine the contribution of p38 MAP kinase activity during hydrogen peroxide mediated increased endothelial solute permeability. We also sought to identify the role of p38 MAP kinase-mediated changes in endothelial cell architecture due to hydrogen peroxide challenge.

Methods Hydrogen peroxide mediated permeability of HUVEC was determined with and without inhibition of p38 MAP kinase by SB202190. Hydrogen peroxide mediated rearrangement of the endothelial actin cytoskeleton and junctional proteins occludin and ZO-1 were observed by immunofluorescence microscopy.

Results Hydrogen peroxide treatment of endothelial monolayers caused a significant increase in solute permeability over a ninety-minute time period. Oxidant-mediated permeability and phosphorylation of p38 MAP kinase was significantly attenuated by SB 202190. Immunofluorescent staining for the tight junctional proteins occludin and ZO-1 demonstrated that oxidant challenge caused a loss of endothelial tight junction organization. Rhodamine phalloidin staining of the actin cytoskeleton showed that hydrogen peroxide stimulated increased stress fiber formation with concomitant gap formation between adjacent endothelial cells. Inhibition of p38 MAP kinase during oxidant challenge significantly attenuated actin stress fiber formation and prevented gap formation.

Conclusions These data demonstrate that p38 MAP kinase activity is involved in hydrogen peroxide mediated permeability, stress fiber formation, and intracellular gap formation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.