66
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Hydrogen peroxide modulates immunoglobulin expression by targeting the 3′Igh regulatory region through an NFκB-dependent mechanism

&
Pages 796-809 | Received 12 Jan 2011, Accepted 12 Apr 2011, Published online: 20 May 2011
 

Abstract

Reactive oxygen species such as hydrogen peroxide (H2O2) appear to play a role in signal transduction in immune cells and have been shown to be synthesized upon antigen-mediated activation and to facilitate cellular activation in B- and T-cells. However, an effect of H2O2 on B-cell function (i.e. immunoglobulin (Ig) expression) has been less well-characterized. The effects of H2O2 exposure on lymphocytes may be partly mediated by oxidative modulation of the NFκB signal transduction pathway, which also plays a role in Ig heavy chain (Igh) gene expression. Igh transcription in B lymphocytes is an essential step in antibody production and is governed through a complex interaction of several regulatory elements, including the 3′Igh regulatory region (3′IghRR). Utilizing an in vitro mouse B-cell line model, this study demonstrates that exposure to low μM concentrations of H2O2 can enhance 3′IghRR-regulated transcriptional activity and Igh gene expression, while either higher concentrations of H2O2 or the expression of a degradation resistant inhibitory κB (IκBα super-repressor) can abrogate this effect. Furthermore, suppressive H2O2 concentrations increased protein levels of the p50 NFκB sub-unit, IκBα, and an IκBα immunoreactive band which was previously characterized as an IκBα cleavage product exhibiting stronger inhibitory function than native IκBα. Taken together, these observations suggest that exposure of B lymphocytes to H2O2 can alter Igh transcriptional activity and Ig expression in a complex biphasic manner which appears to be mediated by NFκB and altered 3′IghRR activity. These results may have significant implications to disease states previously associated with the 3′IghRR.

This paper was first published online on Early Online on 16 May 2011.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.