203
Views
18
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Pyrrolidine dithiocarbamate restores gastric damages and suppressive autophagy induced by hydrogen peroxide

, , , , , , , , & show all
Pages 210-218 | Received 27 Jul 2014, Accepted 26 Nov 2014, Published online: 23 Jan 2015
 

Abstract

It is well known that gastric barrier is very important for protecting host from various insults. Simultaneously, autophagy serving as a prominent cytoprotective and survival pathway under oxidative stress conditions is being increasingly recognized. Thus, this study was conducted for investigating the effect of pyrrolidine dithiocarbamate (PDTC) on gastric barrier function and autophagy under oxidative stress induced by intragastric administration of hydrogen peroxide (H2O2). The gastric tight junction proteins [zonula occludens-1 (ZO1), occludin, and claudin1], autophagic proteins [microtubule-associated protein light chain 3I(LC3I), LC3II, and beclin1], and nuclear factor kappa B (NF-κB) signaling pathway (p65 and IκB kinase α/β) were determined by Western blot. The results showed that H2O2 exposure disturbed gastric barrier function with decreased expression of ZO1, occludin, and claudin1, and reduced gastric autophagy with decreased conversion of LC3I into LC3II in mice. However, treatment with PDTC restored these adverse effects evidenced by increased expression of ZO1 and claudin1 and increased conversion of LC3I into LC3II. Meanwhile, H2O2 exposure decreased normal human gastric epithelial mucosa cell line (GES-1) viability in a concentration-dependent way. However, after being exposed to H2O2, GES-1 exhibited autophagic response which was inconsistent with our in vivo results in mice, while PDTC failed to decrease autophagy in GES-1 induced by H2O2. Simultaneously, the beneficial effect of PDTC on gastric damage and autophagy in mice might be independent of inhibition of NF-κB. In conclusion, PDTC treatment restores gastric damages and reduced autophagy induced by H2O2. Therefore, PDTC may serve as a potential adjuvant therapy for gastric damages.

Acknowledgments

This study was supported by the National Natural Science Foundation of China (NO. 31272463), the Hunan Provincial Natural Science Foundation of China (NO. 12JJ2014), and the Changsha science and technology key program (K1307007–21). The authors’ contributions were as follows: TJ.Li. and YL.Yin. conceived and designed the study. JL. Duan, J.Yin, and WK. Ren did the experiment and analyzed the data. JL. Duan wrote the manuscript and involved in the data analysis. WK. Ren, and MM. Wu revised the manuscript. All authors read and approved the final version of the manuscript.

Declaration of interest

The authors report no declarations of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.