291
Views
8
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Late-intervention study with ebselen in an experimental model of type 1 diabetic nephropathy

, , &
Pages 219-227 | Received 30 Oct 2014, Accepted 27 Nov 2014, Published online: 30 Jan 2015
 

Abstract

Background and aim. Previous studies have shown that preventive treatment with the antioxidant, ebselen, in experimental models of type 1 diabetic nephropathy resulted in an attenuation of structural and functional damage in the kidney. However, evidence for the effectiveness of ebselen in late-intervention studies is lacking. Thus, we aimed to investigate the effects of ebselen in attenuating established renal injury in type 1 diabetic nephropathy using the Akita mouse model. Methods. Baseline blood glucose and albumin-to-creatinine ratio (ACR) were measured in wild-type (WT) and heterozygous Akita mice at 9 weeks of age. At 10 weeks of age, WT and Akita mice were randomized to receive either vehicle (5% carboxymethyl cellulose) or ebselen by oral gavage at 10mg/kg twice daily. Kidney and urine were collected after 16 weeks of treatment with ebselen for histological and functional analyses. Results. At 9 weeks of age, Akita mice displayed well-established renal dysfunction with significant increases in ACR and urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) levels when compared with WT controls. After 16 weeks of treatment with ebselen, oxidative stress, as measured by nitrotyrosine immunostaining and urinary 8-OHdG levels, was significantly reduced in the Akita mice. Furthermore, gene expression of the major reactive oxygen species-producing nicotinamide adenine dinucleotide phosphate enzyme, Nox4, was also reduced by ebselen. However, ebselen had no effect on ACR and glomerulosclerosis. Conclusion. Chronic treatment with ebselen significantly reduced oxidative stress in the Akita mice. However, ebselen failed to attenuate functional or structural kidney damage in this late-intervention study using the Akita mouse model.

Declaration of interest

The authors report no declarations of interest. The authors alone are responsible for the content and writing of the paper.

SMT was funded by a Juvenile Diabetes Research Foundation International Fellowship.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.