8
Views
27
CrossRef citations to date
0
Altmetric
Original Article

Induction and Rejoining of DNA Single-Strand Breaks in Relation to Cellular Growth in Human Cells Exposed to Three Hydroperoxides at 0°C and 37°C

Pages 79-89 | Received 19 Feb 1991, Published online: 07 Jul 2009
 

Abstract

There was a 5-fold increase in cytotoxicity for cumene hydroperoxide, 10-fold for tert-butyl hydroperoxide and 25-fold for hydrogen peroxide, under metabolizing conditions (37°C) in comparison to nonmetabolizing conditions (0°C), when human P31 cells were exposed for 60 min. The induction of DNA single-strand breaks correlated poorly with cytotoxicity. Hydrogen peroxide was by far the most effective agent inducing single-strand breaks irrespective of temperature. Cumene hydroperoxide produced fewer strand breaks than tert-butyl hydroperoxide despite its greater cytotoxicity at either 37°C or at 0°C. The pattern of single-strand break induction did not change with temperature. The number of breaks, however, increased when the cells were exposed at 37°C. The pattern of rejoining was similar for hydrogen peroxide- and tert-butyl hydroperoxide-induced breaks at both temperatures whereas the rejoining of cumene hydroperoxide-induced breaks deviated somewhat from this pattern. The results indicate that there is no clear-cut relationship between induction of DNA single-strand breaks and cytotoxicity after hydroperoxide exposure.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.