17
Views
40
CrossRef citations to date
0
Altmetric
Original Article

Nitroxide-Stimulated H2O2 Decomposition by Peroxidases and Pseudoperoxidases

&
Pages 157-175 | Received 19 Mar 1992, Accepted 20 May 1992, Published online: 07 Jul 2009
 

Abstract

Nitroxide free radicals interact with Hb/metHb, Mb/metMb and with peroxidases/phenols to induce a catalase-like conversion of H2O2 to O2 (catalatic activity), without being substantially consumed in the process. The mechanism of this reaction is postulated to involve a one-electron oxidation of the nitroxide to the immonium oxene, which then reacts further to release oxygen and the nitroxide. An involvement of the immonium oxene in the reaction mechanism is consistent with ferryl heme reduction by nitroxides and a detection of the reduced nitroxide when the reaction mixture is supplemented with the two-electron reductant sodium borohydride. The nitroxide-induced catalatic activity is completely inhibited when the reaction mixture is supplemented with glutathione. Nitroxides suppress free radical formation by hydroperoxide-activated heme proteins, as inferred from their inhibition of the spin-trapping of glutathionyl radicals. H2O2 decomposition and a suppression of reactive free radical formation by heme proteins appears to be an antioxidant activity of nitroxides, which is distinct from their previously reported superoxide dismutating activity and which may be a factor in their protective action in models of cardiac reperfusion injury.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.