14
Views
35
CrossRef citations to date
0
Altmetric
Original Article

Commentary Salicylate Trapping of -OH as a Tool for Studying Post-Ischemic Oxidative Injury in the Isolated Rat Heart

Pages 355-370 | Received 26 May 1994, Published online: 07 Jul 2009
 

Abstract

The use of salicylate as a chemical trap for -OH represents a simple and convenient alternative to the use of spin trapping techniques to study oxidative injury in isolated perfused organs. In these systems, salicylate is included in the perfusion buffer at concentrations ranging from 0.1 to 2mM depending on the detection apparatus employed. In our studies, we have used a coulometric detector, which has a theoretical efficiency of 100% as compared to 1–5% for the standard glassy carbon electrode. We have been able to generate reproducible results by inclusion of only 100 μM salicylate, a concentration demonstrated not to affect pre- or post-ischemic cardiac function. In initial studies, we observed an increase in perfusate 2,5-dihydroxybenzoic acid consistent with an early post-ischemic burst of -OH, not unlike that reported using spin trapping techniques. Since then we and others have used this technique to examine possible relationships between -OH formation and treatments that alter post-ischemic cardiac functional recovery. For example, preischemic loading of hearts with copper results in increases in postischemic dysfunction and LDH release that were associated with an increase in 2,5-dihydroxybenzoate and by inference, -OH formation. Alternatively, we have reported that the nitroxide spin label, TEMPO, reputed to be a superoxide dismutase mimetic, decreased post-ischemic arrhythmias and 2,5-dihydroxybenzoate formation. Most recently, we have observed that preischemic loading of hearts with zinc-bis-histidinate results in improved post-ischemic cardiac function and decreased LDH release; changes that were associated with decreased 2,5-dihydroxybenzoate formation. These studies indicate that under certain conditions, salicylate is a valuable alternative to spin trapping techniques to probe the role of -OH in cardiac oxidative injury, particularly when applied to the isolated perfused heart preparation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.