23
Views
52
CrossRef citations to date
0
Altmetric
Original Article

Possible Role of Nitric Oxide on Fertile and Asthenozoospermic Infertile Human Sperm Functions

&
Pages 347-354 | Received 19 Apr 1996, Published online: 07 Jul 2009
 

Abstract

The capacity of human sperm fertilization is principally dependent on sperm motility and membrane integrity. Oxygen-derived free radicals, such as superoxide anion, are known to impair sperm motility and membrane integrity by inducing membrane lipid peroxidation (LPO). Nitric oxide (NO), a biologically active free radical, has recently been shown to inactivate superoxide and increase intracellular guanosine-3′, 5′-cyclic monophosphate (cGMP). The aim of this study is to investigate the effects of NO on human sperm motility, viability, lipid peroxidation and cGMP in fertile and asthenozoospermic infertile individuals in vitro. Semen samples were obtained from 10 fertile volunteers and 10 asthenozoospermic infertile patients. Washed spermatozoa were incubated at 37°C in Ham's F-10 medium with 0, 25, 50, 100, 200, or 400nM sodium nitroprusside (SNP, Na2 [Fe(CN) 5NO] · 2H2O), a nitric oxide releaser. Samples were analyzed for viability, determined by eosin-Y dye exclusion method at 0, 1, 2, 3, 5 and 6 h of incubation; motility, determined by the trans-membrane migration method within 2 h of incubation; LPO determined by malondi-aldehyde (MDA) -thiobarbituric acid method at 3 h of incubation; and the intracellular cGMP, determined by 125I-cGMP radioimmunoassay at 3 h of incubation. The results showed: in both fertile and infertile samples, viability, trans-membrane migration ratio and the levels of intracellular cGMP in 25-100nM SNP-treated spermatozoa were significantly higher than those in control groups, while MDA contents in treated groups were significantly lower than those in controls. However, when concentrations of SNP increased to 200–400nM, the opposite effects were exhibited. The effects of SNP on these processes were biphasic within 25–400nM. The most effective concentration was 100nM. These data suggested that NO is beneficial to sperm viability and motility in both fertile and infertile individuals, and that reduction of lipid peroxidative damage to sperm membranes and increase of intracellular cGMP may be involved in these benefits.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.