51
Views
45
CrossRef citations to date
0
Altmetric
Original Article

In Vivo Dual Effects of Vitamin C on Paraquat-Induced Lung Damage: Dependence on Released Metals from the Damaged Tissue

, &
Pages 93-107 | Received 23 May 1997, Accepted 01 Aug 1997, Published online: 07 Jul 2009
 

Abstract

Vitamin C, a potent antioxidant, can act as a pro-oxidant in the presence of free transition metal ions by accelerating the Fenton reaction. An in vivo pro-oxidant role of vitamin C has been suggested, but direct evidence for it is scant. Here, we report the dual role of vitamin C on paraquat-induced lung injury, which appears to depend on the metal ions released from damaged cells. Vitamin C (10 mg/kg) given at the time when the extensive tissue damage was in progress aggravated the oxidative damage, while it protected against the damage when given before the initiation of the damage. The extent of oxidative tissue damage was monitored by measuring the expiratory ethane, one of the hydrocarbons produced during lipid peroxidation. Deferoxamine, given intraperitoneally as a bolus dose of 50 mg/kg, completely blocked the aggravation of oxidative damage by vitamin C. Moreover, deferoxamine unmasked the antioxidant effect of vitamin C. The results show that vitamin C can either aggravate or alleviate the oxidative tissue damage depending on the presence of metal ions released from damaged cells.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.