487
Views
43
CrossRef citations to date
0
Altmetric
Original Article

Advanced Fluorocarbon-Based Systems for Oxygen and Drug Delivery, and Diagnosis

&
Pages 43-52 | Published online: 11 Jul 2009
 

Abstract

Fluorocarbons and fluorocarbon-derived materials constitute a vast family of synthetic components that have a range of remarkable properties including exceptional chemical and biological inertness, gas-dissolving capacity, low surface tension, high fluidity, excellent spreading characteristics, unique hydro- and lipophobicity, high density, absence of protons, and magnetic susceptibility close to that of water.

These properties lead to a diversity of products and applications as illustrated by those products that are already in advanced clinical trials, which comprise: 1) an injectable oxygen carrier, i.e. blood substitute, consisting of a fluorocarbon-in-water emulsion for use in surgery to alleviate the problems raised by the transfusion of homologous blood; the same emulsion is also being evaluated with cardiopulmonary bypass patients; 2) a neat fluorocarbon for treatment of acute respiratory failure by liquid ventilation; and 3) fluorocarbon-based or stabilized gas bubbles to be used as contrast agents for the assessment of heart function and detection of perfusion defects by ultrasound imaging.

Proper selection of the fluorocarbon best suited for the intended application, formulation optimization, and advanced stabilization and processing procedures led to effective, ready-for-use products with minimal side-effects.

Further highly fluorinated materials, including amphiphiles and various fluorocarbonbased colloidal systems that have potential as pulmonary, topical and ophthalmological drug delivery agents, and as skin protection barriers, are now being investigated. Such systems include drug-in-fluorocarbon suspensions, reverse water-in-fluorocarbon emulsions, oil-in-fluorocarbon emulsions, multiple emulsions, microemulsions, fluorocarbon gels, fluorinated liposomes, fluorinated tubules and other novel supramolecular systems.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.