93
Views
27
CrossRef citations to date
0
Altmetric
Original Article

Modified Hemoglobin Solution, with Desired Pharmacological Properties, Does not Activate Nuclear Transcription Factor NF-kappa B in Human Vascular Endothelial Cells

, , , &
Pages 193-210 | Published online: 11 Jul 2009
 

Abstract

The aim of the present study was to evaluate the role of hemoglobin (Hb) and the contribution of chemically modified Hb solutions on the activation of nuclear transcription factor, NF-kappa B, and propagation of oxidative stress within human vascular endothelial cells. The activation of an oxidative stress-sensitive NF-kappa B can be linked with the propagation of an inflammatory state via rapid induction of genes for several pro-inflammatory mediators. Human coronary artery endothelial cells (HCAEC) were cultured on glass coverslips or cell culture plates to confluence. Then, the cells were incubated for up to 18 hours with endothelial basal medium (EBM) supplemented with 5% FBS and test agents in a concentration of 0.1 and 0.2 mmol: 1) unmodified bovine Hb (UHb); 2) modified Hb solution polymerized with glutaraldehyde (GLUT-Hb), and 3) a novel modified Hb solution (Hb-PP-GSH) prepared according to our patented procedure (U.S. Patent No. 5,439,882). The positive control for the NF-kappa B activation study included a treatment of the cells with: 1) endotoxin; IL-1; TNF; and H2O2. Results indicate that Hb's pro-oxidant potential was influenced by the type of chemical modification procedure. The GLUT-Hb autoxidation rate, peroxidase-like activity and reactivity with H2O2/ferryl species formation were higher as compared to UHb, by 15%, 35% and 30%, respectively. However, pro-oxidant potential of Hb-PP-GSH was significantly lower than that of UHb (by 22%, 12% and 28%, respectively). The extent of oxidative stress of the HCAEC's was found to be the Hb modification-type and concentration dependent. Although the highest endothelial lipid peroxidation and the largest depletion of intracellular GSH was associated with 0.2 mmol of GLUT-Hb, the Hb-PP-GSH did not produce significant changes when compared to the control cells. The UHb generated a moderate oxidative stress to the endothelium. The immunofluorescent and EMSA results indicate a correlation between the type of Hb chemical modification and the induction of NF-kappa B nuclear translocation. We found that GLUT-Hb rapidly activated NF-kappa B and induced nuclear translocation. Treatment of the cells with an increasing amount of UHb leads to the partial nuclear induction of NF-kappa B. However, Hb-PP-GSH did not activate NF-kappa B directly. In this study, the positive control cells treated with endotoxin, IL–1 or TNF demonstrated full nuclear translocations, whereas H2O2 caused only partial induction. In conclusion, nuclear translocation of NF-kappa B by Hb solutions might be dependent on Hb's pro-oxidant potential and extent of Hb-mediated endothelial oxidative stress. Besides the low oxidative potential of Hb-PP-GSH, the observed lack of NF-kappa B activation by this Hb solution can be also related to the anti-inflammatory properties of adenosine which is used in our novel modification procedure. In this study, only the Hb-PP-GSH, crosslinked intramolecularly with o-adenosine triphosphate and intermolecularly with o-adenosine, and combined with reduced glutalhione, was shown to be non-toxic to the endothelium and promises to be an effective free-Hb based blood substitute.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.