75
Views
3
CrossRef citations to date
0
Altmetric
Research Article

shRNA interference for extracellular signal-regulated kinase 2 can inhibit the growth of esophageal cancer cell line Eca109

, , , , , , & show all
Pages 170-177 | Received 11 Dec 2009, Accepted 10 Mar 2010, Published online: 23 Apr 2010
 

Abstract

Background: Esophageal squamous cell carcinoma is one of the most common digestive tract cancers with 5-year survival rate less than 10% owing to its poor prognosis. Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway has been mainly involved in the pathogenesis of various cancers. In present study, we investigated the role of ERK2 in human esophageal cancer cell line Eca109.

Methods: Short-hairpin RNA (shRNA) interference vector targeted ERK2 was constructed using pGeneclip U1 hairpin cloning systems, then transfected into Eca109 cell line. The transfection efficiency was observed by fluorescence microscope and cell growth after transfection with shRNA-ERK2 vector was determined by methylthiazolyl blue tetrazolium (MTT) assay. The ERK2 expression after transfection was detected by western-blotting. The cell apoptosis and cell-cycle was analyzed by flow cytometry. The role of p-ERK2 was confirmed by immunohistochemistry and soft agar colony formation assay.

Results: The growth of Eca109 transfected with shRNA-ERK2 vector was obviously inhibited compared to control group via MTT analysis. The inhibition rate after transfection with shRNA-ERK2 for 96 h was 10.45%, the expression of ERK2 was obviously reduced compared to the control analyzed by western-blot, cell apoptosis was 9.7% (compared to control, P < 0.05), and cell-cycle was arrested at G1 phase.

Conclusions: In present study we demonstrated for the first time that transfection with shRNA-ERK2 targeted ERK2 into Eca109 cells can inhibit growth of Eca109, inducing cell apoptosis and influencing cell-cycle. Together, these results we obtained suggested that ERK2 plays an important role in cell growth of Eca109.

Acknowledgements

The project was supported by the Natural Science Foundation of China (No. 30760223, 30860097) and the First Affiliated of Xinjiang Medical University Grant (No.2008-YFY-01).

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.