271
Views
7
CrossRef citations to date
0
Altmetric
Proceedings from the 2012 Great Lakes GPCR retreat

G protein-coupled receptor dimers: look like their parents, but act like teenagers!

&
Pages 135-138 | Received 16 Nov 2012, Accepted 13 Dec 2012, Published online: 17 Jan 2013
 

Abstract

G protein-coupled receptors (GPCRs) represent the largest group of cell surface receptors and an important pharmacological target. Though originally thought to act in a one receptor–one effector fashion, it is now known that these receptors are capable of oligomerization and can function as dimers or higher order oligomers in native tissue. They do not only assemble with identical receptors as homodimers, but also associate with different GPCRs to form heterodimers. We discuss here how heterodimeric GPCRs can assemble, traffic and signal in a manner distinct from their individual receptor components or from homodimers. These receptor pairs are also demonstrated to be regulated by different chaperones, Rabs and scaffolding proteins, further emphasizing their potential as unique targets. We believe in the importance of investigating each GPCR heterodimer as an individual signaling complex, as they appear to act differently from each monomer constituting them. Just as teenagers may resemble their parents and share their genetic makeup, they can still act in a manner that is entirely unique!

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.