123
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Molecular modeling studies and comparative analysis on structurally similar HTLV and HIV protease using HIV-PR inhibitors

, &
Pages 361-371 | Received 09 Jan 2014, Accepted 24 Feb 2014, Published online: 02 Apr 2014
 

Abstract

Retroviruses are most perilous viral family, which cause much damage to the Homo sapiens. HTLV-1 mechanism found to more similar with HIV-1 and both retroviruses are causative agents of severe and fatal diseases including adult T-cell leukemia (ATL) and the acquired immune deficiency syndrome (AIDS). Both viruses code for a protease (PR) that is essential for replication and therefore represents a key target for drugs interfering with viral infection. In this work, the comparative study of HIV-1 and HTLV-1 PR enzymes through sequence and structural analysis is reported along with approved drugs of HIV-PR. Conformation of each HIV PR drugs have been examined with different parameters of interactions and energy scorings parameters. MD simulations with respect to timescale event of 20 ns favors that, few HIV-PR inhibitors can be more active inside the HTLV-1 PR binding pocket. Overall results suggest that, some of HIV inhibitors like Tipranavir, Indinavir, Darunavir and Amprenavir are having good energy levels with HTLV-1. Due to absence of interactions with MET37, here we report that derivatives of these compounds can be much better inhibitors for targeting HTLV-1 proteolytic activity.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.