430
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Effects of apelin-13 in mice model of experimental pain and peripheral nociceptive signaling in rat sensory neurons

, , , &
Pages 243-247 | Received 24 Jun 2015, Accepted 02 Aug 2015, Published online: 13 Oct 2015
 

Abstract

Objective: Apelin-13 is an endogenous peptide with potential analgesic action, although the sites of its analgesic effects remain uncertain and the results are even controversial with regard to its pain modulating action. This study evaluated the possible pain-modulating action of peripherally administered apelin-13 using heat-induced, withdrawal latency to the thermal stimuli, acute pain model in mice. Involvement of peripheral mechanisms was tested, by using the intracellular calcium concentrations as a key signal for nociceptive transmission, in cultured rat dorsal root ganglion (DRG) neurons. Methods: DRG neurons were cultured on glass coverslips following enzymatic digestion and mechanical agitation, and loaded with the calcium-sensitive dye Fura-2 acetoxymethyl ester (1 µM). Intracellular calcium responses in individual DRG neurons were quantified by ratiometric calcium imaging technique. Results: Peripheral injection of a single dose of apelin-13 (100 mg/kg and 300 mg/kg) significantly decreases the latency to painful stimuli in a dose and time-dependent manner (p < 0.01, p < 0.05, respectively, n = 8 each). Apelin-13 (0.1 µM and 1 µM) did not produce a significant effect on cytoplasmic Ca2+ ([Ca2+]i) responses, evoked by membrane depolarization, in cultured rat DRG neurons. Conclusion: Together these results indicate that apelin-13 can cause increased pain sensitivity after peripheral administration, but this effect does not involve calcium mediated signaling in primary sensory neurons.

Acknowledgement

This research was partially supported by The Scientific and Technological Research Council of Turkey (Grant ID: TUBITAK 110S140).

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.