336
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Designing and optimization of novel human LMTK3 inhibitors against breast cancer – a computational approach

&
Pages 51-59 | Received 18 Dec 2015, Accepted 09 Feb 2016, Published online: 08 Apr 2016
 

Abstract

Estrogen receptor-α (ERα) is expressed more in patients with breast cancer and its level correlated with endocrine resistance. LMTK3 is reported as breast cancer target with regulation of estrogen receptor-α (ERα) through phosphorylation. In this computational study, structure-based inhibitor screening was performed on human LMTK3 using ZINC database. ATP-binding cavity with critical residues involved in the LMTK3 phosphorylation was used as target site for the screening. From the large ligand library, the best compounds were screen with three-phase virtual screening methods in Dockblaster, AutoDock Vina and AutoDock, respectively. The evaluation of ligands was carried out by binding energy and weak interactions, such as hydrogen bond interactions and hydrophobic contacts, in the target site that favors LMTK3 inhibition. Top compounds were found to be more effective in druglikeness activity by ADME prediction. The stability and binding affinity of ligand complexes were optimized by trajectory analysis such as RMSD, Rg, SASA and interhydrogen bonds from molecular dynamics simulations. The behavior of protein motion after ligand binding was illustrated by eigenvectors from principal component analysis (PCA). In addition, binding free energy of the LMTK3–ligand complexes were calculated by MM/PBSA methods and results supported the strong binding in dynamic system. Thus, the computational studies illustrated the structural insights on LMTK3 inhibition mechanism by ligands ZINC04670539, ZINC05607079 and ZINC04344028, also proposed as potent lead candidates. Our findings step towards developing novel LMTK3 inhibitors and identified lead candidates can be future breast cancer drugs with further experimental studies.

Acknowledgements

The authors thank VIT University management for providing the facilities to carry out this work.

Declaration of interest

The authors report no declarations of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.