73
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Biodegradable Cisplatin Microspheres for Direct Brain Injection: Preparation and Characterization

, &
Pages 53-65 | Received 17 May 1996, Accepted 15 Nov 1996, Published online: 27 Sep 2008
 

ABSTRACT

The objectives of the present study were to prepare cisplatin loaded-PLGA microspheres that are suitable for direct brain injection and to characterize them in terms of their physicochemical properties, in vitro drug release, and self-removal mechanism. The microspheres were prepared by emulsificationlsolvent evaporation method using PLGA (50:50) as the biodegradable matrix forming polymer. The physicochemical characterization encompassed the following: surface morphology, particle size, entrapment efficiency, surface area, and density. The in vitro release and in vitro degradation studies were performed in phosphate buffer and in 10% rat brain preparation. SEM micrographs revealed that the microspheres have a rough porous surface and a smooth interior. Particle size typically ranged from 180 to 250 pm with an average of 230 Tpm. Entrapment efficiency was approximately 70% and was found to be dependent on the particle size. Surface area and density ranged from 0.038 to 0.025 m2g and from 1.44 to 1.39 g/cm3, respectively. Both were also dependent on particle size. In the in vitro release study in phosphate buffer, approximately 80% of cisplatin was released over 30 days, after which the release rate plateaued. The release profile in 10% rat brain preparation was comparable in shape to that obtained in phosphate buffer. However, the release rate was lower and the total amount released by the end of the study was only 55% of the total cisplatin content. The degradation of PLGA microspheres in phosphate buffer and in rat brain homogenate correlated well with the respective release profiles. Based on the evidence of self-removal and the sustained release of cisplatin for over a month, cisplatin-loaded PLGA microspheres may be useful for local delivery to brain tumors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.