Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 18, 2011 - Issue 3
414
Views
31
CrossRef citations to date
0
Altmetric
Original Article

The generic amyloid formation inhibition effect of a designed small aromatic β-breaking peptide

, , &
Pages 119-127 | Received 06 Oct 2010, Accepted 18 Apr 2011, Published online: 09 Jun 2011
 

Abstract

The development of generic inhibitors in order to control the formation of amyloid fibrils and early oligomers is still an unmet medical need. As it is hypothesized that amyloid assemblies represent a generic protein supramolecular structure of low free energy, targeting the key molecular recognition and self-assembly events may provide the route for the development of such potential therapeutic agents. We have previously demonstrated the ability of hybrid molecules composed of an aromatic moiety and the α-aminoisobutyric acid β-sheet breaker elements to act as excellent inhibitors of amyloid fibril formation. Specifically, the D-Trp-Aib was shown to be a superb inhibitor of the formation of Alzheimer’s disease β-amyloid fibrils and oligomers both in vitro and in vivo. Here, we demonstrate that the rationally designed molecule has the generic ability to inhibit amyloid fibril formation by calcitonin, α-synuclein, and the islet amyloid polypeptide. Moreover, we demonstrate the inability of two modified peptides, D-Ala-Aib and D-Trp-Ala, to inhibit and disassemble amyloid fibril formation, a fact that provides an additional evidence for the suggested structural basis of the inhibitor activity. Taken together, we believe that the use of β-breaker elements combined with aromatic moiety may present a promising approach for the development of fibrillization inhibition drug candidate.

Acknowledgment

We thank Dan Davidi for his help with the experiments. We thank Yaacov Delarea for his help with the electron microscopy experiments. We thank the members of the Gazit laboratory for helpful discussions.

Declaration of interest: The authors acknowledge the support of MERZ cooperation for this research. The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 903.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.